

УСТРОЙСТВО ПЛАВНОГО ПУСКА SFB

Руководство по эксплуатации

Содержание

1	Осно	Основные сведения об изделии4					
2	Техн	Технические данные4					
3	Выбор УПП						
4	Ком	9					
5	Меры безопасности						
6	Пра	Правила монтажа и эксплуатации					
	6.1	Монта	ж	10			
	6.2	Силова	ая цепь	12			
	6.3	Цепи у	/правления	14			
7	Пан	ель упра	вления	16			
8	Настройка параметров			17			
	8.1	Парам	петры соединения	18			
	8.2	Парам	ıетры	19			
		8.2.1	Основные параметры	19			
		8.2.2	Параметры защиты	19			
		8.2.3	Параметры управления	21			
	8.3	Списо	к аварий	24			
9	Тран	спортир	оование, хранение и утилизация	24			
10	Гара	нтии из	готовителя	25			
Пр	илож	ение А					
Ко	ммун	икация I	Modbus	26			
Пр	илож	ение Б					
Пр	имер	схем по	дключения	32			

1 Основные сведения об изделии

- 1.1 Устройство плавного пуска серии SFB торгового знака ONI (далее УПП) предназначено для плавного запуска трёхфазных и однофазных электрических асинхронных двигателей с целью снижения пиковых нагрузок на двигатель и питающую сеть, используется в трёхфазных электрических сетях переменного тока, напряжением до 500 В и частотой 50/60 Гц, промышленных объектов.
- 1.2 УПП соответствует TP TC 004/2011, TP TC 020/2011 и ГОСТ P 50030.4.2 (МЭК 60947-4-2).
 - 1.3 УПП предназначено для использования в среде со степенью загрязнения 2.

2 Технические данные

2.1 Основные технические данные УПП представлены в таблице 1

Таблица 1

Параметр	Значение
Номинальное напряжение	220 B, 380 B, 500 B AC (от -15 % до +10 %)*
Номинальная частота	50/60 Гц
Номинальное напряжение цепи управления	100÷240 В АС или 24 В DC*
Возможные способы подключения	Соединение по схеме «звезда»
обмоток	Соединение по схеме «треугольник»
Начальное напряжение пуска %	30÷70
Время ускорения, с	1÷30
Время замедления, с	0÷30
Байпас	Встроенный
Количество пусков в час	При нормальной нагрузке или без нагрузки — до 10 При тяжелой нагрузке — до 5
Промышленная сеть	Modbus RTU (RS-485)*
Защита	Защита от повышенных токов Защита от длительной перегрузки Защита от перегрузок класса 10A, 10, 20 и 30 Дисбаланс фазных токов Защита от неправильного чередования фаз Защита от обрыва фаз Защита от потери напряжения SCR защита от перегрева
Категория применения	AC-53a

Продолжение таблицы 1

Параметр	Значение
Допустимые перегрузки	300 % в течение 7 с (при 50 % времени включения и 50 % времени выключения)
Климатическое исполнение по ГОСТ 15150	УХЛЗ.1
Температура эксплуатации, °С	От 0 до 50
Влажность	Относительная влажность 75 % при температуре плюс 15 °C. Допускается эксплуатация преобразователей при относительной влажности 95 % и температуре плюс 25 °C
Температура хранения, °С	От минус 40 до плюс 70
Степень защиты по ГОСТ 14254 (IEC 60529)	IP20
Высота над уровнем моря, м	1000
Окружающая среда	Невзрывоопасная, не содержащая агрессивных газов и паров в концентрации, разрушающей металлы и изоляцию, не насыщенная токопроводящей пылью и водяными парами
Группа механического исполнения по ГОСТ 7516.1	M2
* В зависимости от заказанной модели	1

2.2 Структура и пример условного обозначения УПП показаны на рисунке 1.

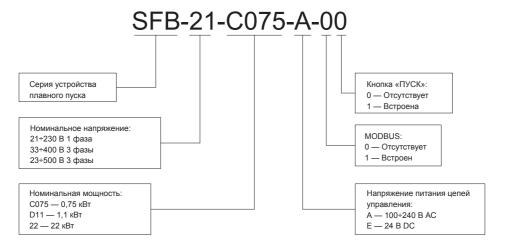


Рисунок 1 — Расшифровка названия модели

2.3 В таблице 2 указаны технические данные УПП.

Таблица 2

Модель	Напряжение, В	Мощность, кВт	Номинальный ток, А	Габарит	Масса, кг
SFB-21-D04-X-XX	230	0,37	2	1	0,8
SFB-21-C055-X-XX	230	0,55	3	1	0,8
SFB-21-C075-X-XX	230	0,75	4	1	0,8
SFB-21-D11-X-XX	230	1,1	6	1	0,8
SFB-21-D15-X-XX	230	1,5	9	1	0,8
SFB-21-D22-X-XX	230	2,2	12	1	0,8
SFB-21-D37-X-XX	230	3,7	20	1	1
SFB-21-D55-X-XX	230	5,5	30	3	1
SFB-21-D75-X-XX	230	7,5	45	3	2
SFB-33-C075-X-XX	400	0,75	1,5	1	0,8
SFB-33-D11-X-XX	400	1,1	2,2	1	0,8
SFB-33-D15-X-XX	400	1,5	3	1	0,8
SFB-33-D22X-XX	400	2,2	4,5	1	0,8
SFB-33-D37-X-XX	400	3,7	7,5	1	0,8
SFB-33-D55-X-XX	400	5,5	11	1	0,8
SFB-33-D75-X-XX	400	7,5	15	2	1,4
SFB-33-11-X-XX	400	11	22	2	1,4

Продолжение таблицы 2

Модель	Напряжение, В	Мощность, кВт	Номинальный ток, А	Габарит	Масса, кг
SFB-33-15-X-XX	400	15	30	3	2,4
SFB-33-18-X-XX	400	18,5	37	3	2,4
SFB-33-22-X-XX	400	22	45	3	2,4
SFB-33-30-X-XX	400	30	60	3	2,4
SFB-33-37-X-XX	400	37	75	3	2,4
SFB-33-45-X-XX	400	45	90	4	5
SFB-33-55-X-XX	400	55	110	4	5,2
SFB-33-75-X-XX	400	75	150	4	5,2
SFB-53-D11-X-XX	500	1,1	1,5	1	1
SFB-53-D15-X-XX	500	1,5	2,2	1	1
SFB-53-D22-X-XX	500	2,2	3	1	1
SFB-53-D37-X-XX	500	3,7	4,5	1	1
SFB-53-D55-X-XX	500	5,5	7,5	1	1
SFB-53-D75-X-XX	500	7,5	11	1	1
SFB-53-11-X-XX	500	11	15	2	1,4
SFB-53-15-X-XX	500	15	22	2	1,4
SFB-53-18-X-XX	500	18	30	3	2,4
SFB-53-22-X-XX	500	22	37	3	2,4
SFB-53-30-X-XX	500	30	45	3	2,4
SFB-53-37-X-XX	500	37	60	3	2,4
SFB-53-45-X-XX	500	45	75	3	2,4
SFB-53-55-X-XX	500	55	90	4	5
SFB-53-75-X-XX	500	75	110	4	5,2
SFB-53-90-X-XX	500	90	150	4	5,2

2.4 В таблице 3 указаны диаметры клемм питания, клемм заземления и допустимые сечения проводов для клемм управления.

Таблица 3

Габарит	Диаметр силовых клемм, мм	Диаметр клемм заземления, мм	Максимальное сечение провода для клемм управления, мм²
1	5	4	4
2	5	4	4
3	6	4	4
4	8	5	6

2.5 Габаритные размеры УПП показаны на рисунке 2.

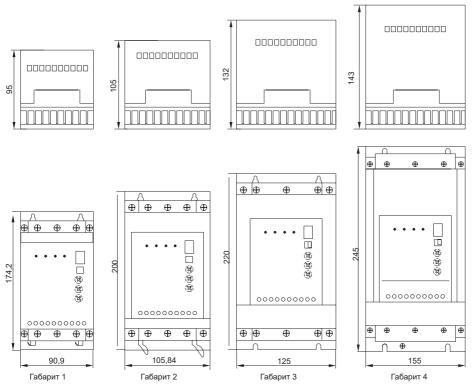


Рисунок 2 – Габаритные размеры устройств плавного пуска

3 Выбор УПП

- 3.1 Мощность УПП для легких нагрузок выбирается в соответствии с номинальной мощностью электродвигателя. Под лёгкой нагрузкой подразумеваются вентиляторы, насосы, компрессоры и т. д.
- 3.2 Мощность УПП для тяжелых нагрузок выбирается больше мощности (на одно значение) электродвигателя. Под тяжёлой нагрузкой подразумеваются центрифуга, миксер, дробилка, блендер и т. д.
- 3.3 Мощность УПП при необходимости частых пусков выбирается больше мощности (на одно значение) мощности электродвигателя.
- 3.4 При работе УПП в окружающей среде выше плюс 40 °C значение номинального тока уменьшается на 0,8 % за каждый 1 °C.

8 3 Выбор УПП

3.5 Значение номинального тока УПП при эксплуатации на высоте более 1000 м над уровнем моря рассчитывается из формулы:

$$In = 100 - \frac{(x-1000)}{150},\tag{1}$$

где х – фактический значение в метрах над уровнем моря.

Пример расчёта для 2000 м:

$$In = 100 - \frac{2000 - 1000}{150} = 93,3 \%$$

Номинальное значение тока УПП должно снизиться на 93,3 % при работе на 2000 м над уровнем моря.

4 Комплектность

4.1 Комплект поставки УПП представлен в таблице 4.

Таблица 2

Наименование	Количество, шт. (экз.)
УПП	1
Паспорт	1
Руководство по эксплуатации	1
Упаковка	1

5 Меры безопасности

1) Перед началом использования устройства плавного пуска ознакомьтесь с руководством по эксплуатации.

2) Монтаж, подключение и пуск УПП в эксплуатацию должны осуществляться только квалифицированным электротехническим персоналом в соответствии с «Правилами технической эксплуатации электроустановок потребителей» и «Межотраслевыми правилами по охране труда (правила безопасности) при эксплуатации электроустановок потребителей», прошедшим обучение по электробезопасности с присвоением группы не ниже III.

ЗАПРЕЩАЕТСЯ

Снимать крышку и прикасаться к печатным платам при включенном напряжении питания. Это может привести к поражению электрическим током.

- 3) Необходимо обеспечить надежное подключение провода заземления к контакту РЕ для обеспечения безопасности персонала.
- 4) Во избежание повреждения УПП и возникновения пожароопасной ситуации запрещается подавать напряжение электросети переменного тока на выходные клеммы «T1/U», «T2/V» и «T3/W», предназначенные для подключения двигателя. Необходимо проследить, чтобы напряжение питания силовой цепи подавалось на клеммы ввода электропитания «L1/R», «L2/S» и «L3/T»
- 5) Устройство плавного пуска проходят тесты на сопротивление изоляции. Неправильно проведённые тесты изоляции могут привести к повреждению УПП.
- 6) Монтаж и электрическое подключение устройства плавного пуска должны производиться в соответствии с регламентирующими документами.
- 7) Рекомендуется один раз в 6 месяцев подтягивать винты контактных зажимов, давление которых со временем ослабевает из-за циклических изменений температуры окружающей среды и пластической деформации металла зажимаемых проводников. Сильный нагрев плохо затянутых электрических соединений может привести к возникновению пожароопасной ситуации.

ЗАПРЕЩАЕТСЯ

Подключать на выход УПП компенсаторы реактивной мощности и ёмкостную нагрузку. При необходимости компенсатор реактивной мощности можно подключить со стороны сети питания.

8) При подключенном питание напряжение присутствует на входе и на выходе УПП даже, если не подана команда «ПУСК».

6 Правила монтажа и эксплуатации

6.1 Монтаж

6.1.1 Устройства плавного пуска могут устанавливаться отдельно или группами. При установке в электротехнический шкаф необходимо обеспечить вентиляцию для отвода тепла, чтобы предотвратить остановку устройства из-за перегрева. Тепловые потери устройства можно примерно определить по формуле:

$$Pn = 3 \times Ie (BT),$$
 (2)

где Рп — тепловые потери;

le — номинальный ток электродвигателя.

- 6.1.2 При установке в электротехнический шкаф без вентиляции тепловые потери должны быть увеличены в 12 раз.
- 6.1.3 При установке устройств необходимо следовать рекомендациям из рисунка 3.

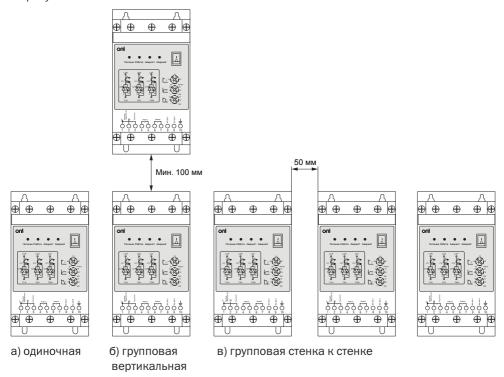
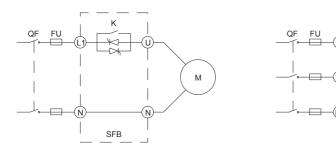



Рисунок 3 — Установка устройств

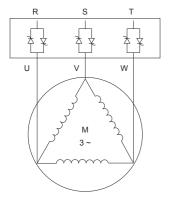
6.2 Силовая цепь

6.2.1. Устройства плавного пуска SFB в зависимости от модели имеют два типа силовой цепи, как показано на рисунке 4.

а) для моделей с однофазным питанием б) для моделей с трехфазным питанием QF — выключатель нагрузки, FU — предохранитель, K — электромеханическое реле встроенного байпаса

SFB

Рисунок 4 — Схема силовой цепи


Рекомендуемое сечение проводника от 6 до 50 мм 2 в зависимости от мощности. Рекомендуемый момент затяжки силовых клемм 4 H \cdot м. Выбираемый проводник должен соответствовать отраслевым стандартам.

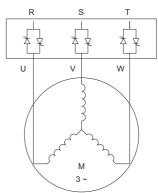

6.2.2 Назначение клемм силовой цепи устройства плавного пуска представлено в таблице 5.

Таблица 5

Маркировка клеммы	Название клеммы	Функция			
	SFB 1 фаза 230 B				
L/R, N	Входные клеммы питания	Подключение однофазного питания			
T/U, N	Выходные клеммы	Подключение однофазного двигателя			
	SFB 3 фазы 400 и 500 В				
L1/R, L2/S, L3/T	Входные клеммы питания	Подключение трехфазного питания			
T1/U, T2/V, T3/W	Выходные клеммы	Подключение трехфазного двигателя			

6.2.3 Возможные схемы подключения электродвигателя к устройству плавного пуска показаны на рисунке 5.

а) по схеме «треугольник»

б) по схеме «звезда»

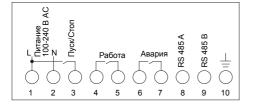
Рисунок 5 — Схемы подключения обмоток электродвигателя

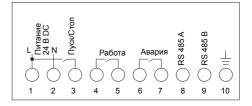
Выбор схемы подключения электродвигателя зависит от номинального применения двигателя. Соответствие номинального напряжения и схемы подключения указаны на заводской табличке электродвигателя.

6.2.4 В таблице 6 указаны применяемые быстродействующие предохранители силовой цепи, которые устанавливаются на входе устройства плавного пуска.

Таблица 6

Номинальный ток УПП, А	SCRI ² T (A ² S)	Номинальный ток предохранителя, А
1,5	70	5
2,2	150	10
3	270	10
4,5	610	16
7,5	1700	25
11	3630	32
15	5000	40
22	7500	50
30	10000	63
37	11000	100
45	12000	160
60	15000	200
75	18000	250
90	40000	315




Продолжение таблицы 6

Номинальный ток УПП, А	SCRI ² T (A ² S)	Номинальный ток предохранителя, А
110	60000	315
150	100000	400

6.3 Цепи управления

6.3.1 УПП поставляются с двумя вариантами плат управления, которые отличаются номинальным напряжением питания. Диаграмма клемм управления показана на рисунке 6.

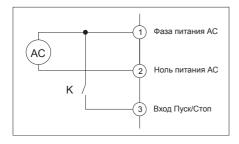
- а) плата управления с напряжением питания 100-240 В АС
- б) плата управления с напряжением питания 24 В DC

Рисунок 6 — Диаграмма клемм управления

6.3.2 Описание назначения клемм управления дано в таблице 7.

Таблица 7

Маркировка клеммы	Номер	Название	Описание
L	1	Питание цепей управления	Питание цепей управления для плат с но-
N	2		минальным напряжением 100-240 В АС
«+»	1	Питание цепей управления	Питание цепей управления для плат
«-»	2		с номинальным напряжением 24 B DC
Пуск/Стоп	3	Пуск/Стоп сигнал управления	Клемма входа сигнала на «Пуск» и «Останов»*
Работа	4	Выход реле «Работа»	Когда УПП в состоянии «Работа», «Ускорение», «Замедление» и «Байпас»,
Работа	5	Общая клемма реле «Работа»	реле замыкается. Номинальный ток реле— 5 A, 220 B AC
Авария	6	Выход реле «Авария»	Когда УПП в состоянии «Авария», реле
Авария	7	Общая клемма реле «Авария»	замыкается. Номинальный ток реле — 5 A, 220 B AC



Продолжение таблицы 7

Маркировка	Номер	Название	Описание
клеммы			
A RS-485	8	RS485 линия «-»	Клеммы подключения промышленной
B RS-485	9	RS485 линия «+»	сети MODBUS**
<u></u>	10	Клемма заземления	

Примечания

- 1* Клемма не активна в версиях устройств плавного пуска со встроенной кнопкой «Пуск» SFB-XX-XXX-X-X1.
- 2 ** Только для версии устройств плавного пуска со встроенным MODBUS SFB-XX-XXX-X-X1.
- 6.3.3 Необходимо, чтобы номинальное напряжение платы управления устройства плавного пуска соответствовало напряжению питающей сети платы. В противном случае плата управления будет повреждена и может выйти из строя.
- 6.3.4 При подключении платы управления с номинальным напряжением 24 В необходимо соблюдать полярность.
- 6.3.5 На рисунке 7 показаны схемы управления пуском и остановом УПП внешними кнопками и приборами. Для запуска УПП необходимо замкнуть клеммы 1 и 3, для остановки эти клеммы должны быть разомкнуты.

а) плата управления с напряжением питания 100-240 В АС

DC + питание

2 DC - питание

К

3 Вход Пуск/Стоп

б) плата управления с напряжением питания 24 В DC

Рисунок 7 — Схема управления

6.3.6 Если для управления устройством используется длинный кабель, необходимо поставить промежуточное реле для предотвращения ложных срабатываний и исключения влияния наводящегося напряжения на длинной линии.

7 Панель управления

7.1 Панель управления служит для настройки устройства и индикации состояния. С помощью панели управления можно настроить время ускорения, время замедления и начальное напряжение. Остальные параметры настраиваются с помощью протокола Modbus. Внешний вид панели управления показан на рисунке 8.

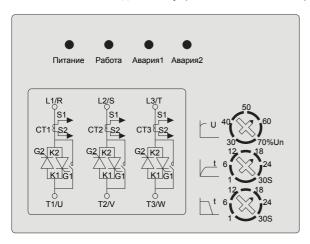


Рисунок 8 — Внешний вид панели управления

7.2 Описание индикаторов и регулировочных потенциометров приведено в таблице 8.

Таблица 8

Символ	Название	Функция
6 12 18 24 30S	Потенциометр настройки времени ускорения	Настраивает время ускорения электродвигателя от 1 до 30 с
t 6 12 18 24 30S	Потенциометр настройки времени замедления	Настраивает время замедления электродвигателя от 0 до 30 с. При установке значения «О» двигатель будет замедляться выбегом

7 Панель управления

Продолжение таблицы 8

Символ	Название	Функция
U 40 60 70%Un	Потенциометр настройки начального напряжения	Настраивает начальное напряжение в пределах от 30 до 70 % номинального напряжения
Питание	Светодиод «Питание»	Горит, когда на УПП подано питание
Работа	Светодиод «Работа»	Горит, когда УПП работает. Мерцает, когда УПП находится в фазе ускорения или замедления
Авария1	Светодиод «Авария 1»	Согласно таблице 9
Авария2	Светодиод «Авария 2»	

7.3 В таблице 9 показана индикация аварийных сообщений.

Таблица 9

Авария	Авария 1	Авария 2
Неправильное чередование фаз	0	0
Потеря фазы / Нет напряжения	0	0
Превышение тока	0	•
Перегрузка	•	0
Дисбаланс токов	•	
Перегрев	0	•

Примечания – Знак « $\mathbb O$ » обозначает мерцание светодиода, знак « $\mathbb O$ » – светодиод выключен, знак « $\mathbb O$ » – светодиод включен.

8 Настройка параметров

Настройки параметров можно задать с помощью подключения к УПП по интерфейсу RS485 протокол MODBUS RTU. Настройки по умолчанию подобраны таким образом, что обеспечивают бесперебойную и необходимую работу системы в большинстве случаев, поэтому изменять их необходимо только в крайних случаях.

8 Настройка параметров

ВНИМАНИЕ

Во время фазы «Пуска» и «Замедления» электродвигателя обмен данными по интерфейсу RS485 приостанавливается.

8.1 Параметры соединения

В таблице 10 указаны настройки соединения по протоколу MODBUS.

Таблица 10 — Настройки сети

Параметр	MODBUS-адрес	Диапазон настроек	По умолчанию
Адрес устройства	40017	1÷127	1
Скорость соединения	40018	0: 1200 BPS 1: 2400 BPS 2: 4800 BPS 3: 9600 BPS 4: 19200 BPS	3: 9600 BPS
Четность	40019	0 – Нечет (Even) 1 – Чет (Odd) 2 – нет	0 – Нечет (Even)

ВНИМАНИЕ

После настройки параметры соединения их нельзя сбросить программными средствами. Для сброса параметров необходимо выключить устройство и сделать следующие шаги:

- Шаг 1 Снять панель управления;
- Шаг 2 Подать питание на плату управления;
- Шаг 3 Установить DIP-переключатель KE2 на группе S1 (см. рисунок 9) в верхнее положение на 2 с;
 - **Шаг 4 Вернуть DIP-переключатель КЕ2 в исходное положение**;
 - **Шаг 5 Выключить питание платы управления.**

Рисунок 9 – Расположение переключателя КЕ2 на плате управления

8.2 Параметры

8.2.1 Основные параметры

8.2.2 Параметры защиты				
FLA, ток двигателя	40002	0÷150 A	Заводская настройка	
Параметр	Modbus-адрес	Диапазон настроек	По умолчанию	
FLC, номинальный ток УПП	40001	0÷150 A	Заводская настройка	
Параметр	Modbus-адрес	диапазон настроек	По умолчанию	

Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
Уровень превышения тока	40005	200 %÷850 %	500 %
Время задержки превышения тока	40006	0,5÷1 c	0,5 с

8 Настройка параметров 19

УПП имеет две защиты по току.

- 1. Если ток будет больше, чем 850 % значения FLC, УПП немедленно отключит выход и включит индикацию «Авария». Реле «Авария» замкнется.
- 2. Если ток будет выше уровня превышения тока (выше тока двигателя FLA), то через время задержки превышения тока УПП отключит выход и включит индикацию «Авария». Реле «Авария» замкнется.

Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
Защита от перегрузки	40007	100 %÷200 %	115 %
Класс защиты по перегрузке	40008	0: Класс 10 A 1: Класс 10 2: Класс 20 3: Класс 30	0: Класс 10 А

Рекомендуется использовать класс 10 A защиты от перегрузки (перегрева электродвигателя). Временные диаграммы защиты от перегрузки показаны на рисунке 10.

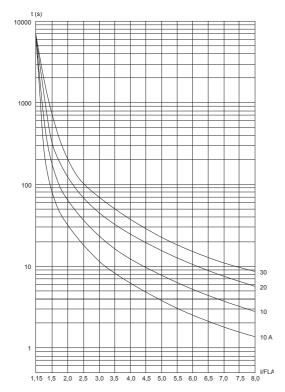


Рисунок 10 — Диаграмма времени срабатывания защиты от перегрузки

В таблице 11 показана зависимость времени срабатывания защиты от перегрузки от класса и кратности превышения тока.

Таблица 11 — Время срабатывания защиты от перегрузки

Класс	Кратность тока						
перегрузки	8	7	6	5	4	3	2
	Минимальное время срабатывания защиты от перегрузки, с						
10 A	1,6	2	3	4	6	12	26
10	3	4	6	8	13	23	52
20	5	6	9	12	19	35	78
30	7	9	13	19	29	52	112

УПП осуществляет защиту от неправильного чередования фаз.

Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
Проверка чередования фаз	40015	0: Выключено 1: Включено	1: Включено

Кроме описанных настроек защит УПП реализует следующие защиты, которые приводят к остановке по аварии:

- 1) Защита от перегрева. При превышении температуры радиатора 85 С сработает защита от перегрева.
 - 2) Защита от потери фазы.
 - 3) Короткое замыкание силовых ключей.
- 4) Дисбаланс фазных токов. Аварийный останов будет осуществлён при разнице фазных токов двигателя (FLA) более чем 20 %.

8.2.3 Параметры управления

К параметрам управления относятся команда Пуск/Стоп, время ускорения, время замедления, начальное напряжение и сброс аварии.

Запустить устройство можно тремя способами:

- 1) Клеммы управления;
- 2) Modbus:
- 3) На моделях SFB-XX-XXX-X-X1 с помощью кнопки на панели управления.

Для управления пуском/остановом и сбросом аварии в устройстве имеются 8 катушек (00001...00008).

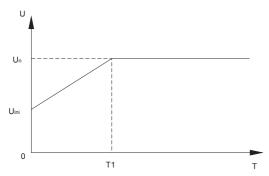
Параметр	Modbus-адрес	Диапазон настроек
Пуск/Стоп	00001	0: Стоп; 1: Пуск*
Резерв	00002	

8 Настройка параметров

Продолжение таблицы 8

Параметр	Modbus-адрес	Диапазон настроек
Резерв	00003	
Резерв	00004	
Резерв	00005	
Резерв	00006	
Резерв	00007	
Сброс аварии	00008	0: Нет; 1: Сброс**

^{*} Когда команда пуск приходит по промышленной сети (00001 установлен в 1), то остановка может быть произведена установкой 00001 в 0 или отключением питания устройства.


Параметры время ускорения, время замедления и начальное напряжения пуска настраиваются с помощью потенциометров на панели управления. Данные параметры могут быть настроены с помощью Modbus RTU при записи в регистр 40013 значения «1».

Параметр	Modbus-адрес	Диапазон настроек	По умолчанию
Время ускорения	40010	1÷30 c	Потенциометр панели
Время замедления	40011	0÷30 c	Потенциометр панели
Начальное напряжение	40012	30 % ÷70 %	Потенциометр панели
Управление параметрами времени ускорения/замедления и начальное напряжение	40013	0 – Управление потенциометрами на панели управления 1 – Управляется через MODBUS	0

22 8 Настройка параметров

^{**} Перед сбросом аварии необходимо снять сигнал запуска с клемм управления для установки причин аварийного останова, в противные случаи устройство запустит двигатель сразу после сброса.

На рисунке 11 показана диаграмма фазы запуска УПП.

Un — номинальное напряжение

Uini — начальное напряжение пуска

Т1 — время ускорения

При запуске напряжение на выходе УПП возрастает от начального напряжения пуска $U_{\rm ini}$ до номинального Un за время ускорения T1

Рисунок 11 — Диаграмма запуска

Начальное напряжение устанавливается минимально необходимым, чтобы при запуске в начале ускорения не происходило заклинивание ротора.

Рекомендуемые настройки параметров запуска и останова указаны в таблице 12.

Таблица 12 — Параметры запуска

Тип нагрузки	Время	Время Время		Кратность	
	ускорения, с	замедления, с	напряжение, %	пускового тока	
Центробежный вентилятор	10	0	30	3,5	
Центробежный насос	10	20	30	3,0	
Поршневой компрессор	10	0	30	3,0	
Подъемник	10	10	60	3,5	
Вращающийся конвертер	10	0	30	2,5	
Миксер	10	0	60	3,5	
Дробилка	10	10	40	3,5	
Спиральный компрессор	10	0	40	3,5	
Ленточный конвейер	10	0	40	3,5	

8 Настройка параметров

8.3 Список аварий

В таблице 13 указан список возможных аварий и неисправностей и способы их устранения.

Таблица 13

Авария	Причины	Способ устранения
Потеря двигателя	1. Обрыв кабеля. 2. Неисправность тиристоров	1. Проверьте соединение между двигателем и УПП. 2. Проверьте тиристоры и обратитесь в сервисный центр
Потеря фазы	Обрыв питающего кабеля	Проверьте соединение питающей сети и УПП
Пониженное напряжение	Напряжение питание ниже номинального	Проверьте уровень напряжения питания
Превышение напряжение	Напряжение питания выше номинального	Проверьте уровень напряжения питания
Перегрузка	Повышенный ток во время работы	 Уменьшите нагрузку. Увеличьте время ускорения. Примените УПП большей мощности
Пониженный ток	Ток слишком мал	1. Проверьте нагрузку. 2. Проверьте кабель между двигателем и УПП
Превышено время ускорения	Время ускорения больше 60 с	1. Проверьте мощность двигателя и УПП. 2. Проверьте вращение двигателя
Неправильное чередование фаз	Фазы питания подключены в неправильной последовательности	Подключите фазы питания в правильной последовательности

9 Транспортирование, хранение и утилизация

- 9.1 Транспортирование УПП в части воздействия механических факторов осуществляется по группе С и Ж ГОСТ 23216, климатических факторов по группе 4 (Ж2) ГОСТ 15150.
- 9.2 Транспортирование УПП допускается любым видом крытого транспорта в упаковке изготовителя, обеспечивающей предохранение упакованных изделий от механических повреждений, загрязнения и попадания влаги.
- 9.3 Хранение УПП производится в упаковке изготовителя в помещениях с естественной вентиляцией при температуре окружающего воздуха от минус 40 °C

до плюс 70 °C и относительной влажности не более 75 % при температуре плюс 15 °C. Допускается хранение УПП при относительной влажности 95 % и температуре плюс 25 °C.

- 9.4 По истечении срока службы изделие подлежит передаче специальной организации по переработке вторсырья.
- 9.5 При утилизации необходимо разделить детали УПП по видам материалов и сдать в специализированные организации по приемке и переработке вторсырья.

10 Гарантии изготовителя

- 10.1 Гарантийный срок эксплуатации УПП 1 год со дня ввода в эксплуатацию, но не более 1,5 лет с даты продажи при условии соблюдения потребителем правил монтажа, эксплуатации, транспортирования и хранения.
- 10.2 В период гарантийных обязательств и при возникновении претензий обращаться к продавцу или в организацию:

Российская Федерация ООО «ИЭК ХОЛДИНГ»

142100, Московская область, город Подольск, проспект Ленина, дом 107/49, офис 457 Тел./факс: +7 (495) 502-79-81

www.oni-system.com

10 Гарантии изготовителя

Приложение A Коммуникация Modbus

Характеристики RS-485

Асинхронное последовательное соединение.

Полудуплекс.

Протокол соединения Modbus RTU.

Бит данных

Бит данных равен 8.

Проверка четности

Проверка четности может быть: Heт/Heчет (Even)/Чет (Odd).

Стоповые биты

Если проверка четности отключена, то применяются 2 стоповых бита. Если проверка четности включена, то применяется 1 стоповый бит.

Время ответа

Нормальное время ответа: 4 мс ≤ время ответа ≤ 40 мс.

Долгое время ответа: время ответа ≤ 200 мс.

Примечания

- 1 Частые запросы будут увеличивать время ответа УПП.
- 2 При управлении по протоколу рекомендуемая частота опроса 100 мс.
- 3 УПП не поддерживает широковещательный формат.
- 4 Если устройство подключено последним в линии необходимо установить терминальный резистор с сопротивлением 120 Ом.
 - 5 Максимальное количество УПП в линии 32.
 - 6 Максимальная длина линии должна быть менее 1,5 км.
 - 7 При длине линии более 1,5 км необходимо использовать промежуточные реле.

ВНИМАНИЕ

Во время фазы «Пуска» и «Замедления» электродвигателя обмен данными по интерфейсу RS485 приостанавливается.

В таблице A.1 указаны поддерживаемые функции Modbus.

Таблица А.1 — Команды Modbus

Функция	Описание	Функция SFB
01	Чтение статуса катушки	Чтение статуса инструкции
02	Чтение статуса входов	Чтение статусов входов/выходов
03	Чтение регистра	Чтение параметров
04	Чтение аналового регистра	Чтение параметров мониторинга
05	Установка управляющей катушки	Управление УПП SFB
06	Установка регистра	Редактирование параметров
08	Диагностика	Проверка соединения

В таблице А.2 указаны возможные действия и количество групп регистров.

Таблица А.2 — Группы регистров

Параметры	Адрес (4 цифры)	Количество регистров	Действия
Инструкции (управление)	00001÷00008	8	Чтение/запись
Статус входов/выходов	10001÷10008	8	Чтение
Мониторинг параметров	30001÷30016	16	Чтение
Установки параметров	40001÷40032	32	Чтение/запись

Инструкции управления

Инструкции управления указаны в таблице А.З.

Таблица А.3 — Инструкции

Параметр	Modbus-адрес	Диапазон настроек
«Пуск/Стоп»	00001	0: Стоп; 1: Пуск*
Резерв	00002	
Резерв	00003	
Резерв	00004	
Резерв	00005	
Резерв	00006	
Резерв	00007	
Сброс аварии	00008	0: Нет; 1: Сброс**

^{*} Когда команда пуск приходит по промышленной сети (00001 установлен в 1), то остановка может быть произведена установкой 00001 в 0 или отключением питания устройства.

^{**} Перед сбросом аварии необходимо снять сигнал запуска с клемм управления для установки причин аварийного останова, в противные случаи устройство запустит двигатель сразу после сброса

Адреса статуса входов/выходов указаны в таблице А.4.

Таблица А.4 — Статусы/выходов входов

Параметр	Modbus-адрес	Диапазон настроек
Внешний «Пуск/Стоп»	10001	0: ОТКЛ.; 1: Вкл.
Внутренний «Пуск/Стоп»	10002	0: ОТКЛ.; 1: Вкл.
DIP 1	10003	0: ОТКЛ.; 1: Вкл.
DIP 2	10004	0: ОТКЛ.; 1: Вкл.
Резерв	10005	
Резерв	10006	
Резерв	10007	
Резерв	10008	

В таблице А.5 указаны параметры мониторинга.

Таблица А.5 — Мониторинг

Параметр	Modbus-адрес	Диапазон настроек
Ток фазы А	30001	0 %65535 %FLA Ток фазы A=%FLA×FLA/100, A
		
Ток фазы В	30002	0 %65535 %FLA Ток фазы B=%FLA×FLA/100, A
Ток фазы С	30003	0 %65535 %FLA Ток фазы C=%FLA×FLA/100, A
Начальное напряжение	30004	0÷512. Начальное напряжение,
		$\% = 30 + int ((512 - n) / 32) \times 3$
Время ускорения	30005	0÷512. Время ускорения = (512 – n) / 16, с
Время замедления	30006	0÷512. Время замедления = (512 — n) / 16, с
Средний ток	30007	065535 %FLA Средний ток=%FLA×FLA/100, A
Частота	30008	0÷65 535 Гц
Статус системы	30009	Бит 0: Стоп
		Бит 1: Ускорение
		Бит 2: Байпас включен
		Бит 3: Замедление
		Бит 4: Работа
		Бит 5: Достигнуто полное напряжение
		Бит 6: Резерв
		Бит 7: Авария
Статус входов	30010	Бит 0: Вход «Пуск» (Внешний)
		Бит 1: Вход «Пуск» (Внутренний)
		Бит 4: Температурный переключатель
		Бит 7: DIP переключатель 1 (Выбор внутреннего/
		внешнего входа пуск)
Статус аварии	30011	

Продолжение таблицы А.7

Параметр	Modbus-адрес	Диапазон настроек
Время наработки часы	30012	0÷65 535 ч
Время наработки $ imes$ 0,1 с	30013	0÷65 535 ч × 0,1 с
Время пуска	30014	0÷65 535 c
Время аварии	30015	0÷65 535 c
Резерв	30016	
Авария 1	30017	Детальная информация — в таблице А.6
Авария 2	30018	Детальная информация — в таблице А.6
Авария 3	30019	Детальная информация — в таблице А.6
Авария 4	30020	Детальная информация — в таблице А.6
Авария 5	30021	Детальная информация — в таблице А.6
Авария 6	30022	Детальная информация — в таблице А.6
Авария 7	30023	Детальная информация — в таблице А.6
Авария 8	30024	Детальная информация — в таблице А.6
Авария 9	30025	Детальная информация — в таблице А.6
Авария 10	30026	Детальная информация — в таблице А.6
Резерв	30026÷30032	

Примечание – FLA – значение номинального тока, указанного на именной табличке УПП. Задаётся параметром 40002.

Пример работы с регистром состояния 30003:

Рассмотрим на примере УПП номинальной мощностью 22 кВт и током 45 A. При считывании параметра «Ток фазы С» по адресу 30003 получаем значение 92, что означает 92% от 45 A. Вычислив, получим ток фазы С 41,4 A.

Пример считывания параметров

Начальное напряжение

При считывании регистра 30004 возвращается число в шестнадцатеричном виде 01F9, которое переводится в десятеричное 505. В соответствии с формулой, указанной в таблице A.7, рассчитывается значение 30+int((512-505)/32)×3=30 %.

Время ускорения

При считывании регистра 30005 возвращается число в шестнадцатеричном виде 0000, которое переводится в десятеричное 0. В соответствии с формулой, указанной в таблице A.7, рассчитывается значение int(512-0)/16=32 с.

Время замедления

При считывании регистра 30006 возвращается число в шестнадцатеричном виде 01ВА, которое переводится в десятеричное 442. В соответствии с формулой, указанной в таблице A.7, рассчитывается значение int(512-442)/16=4 с.

Примеры работы с регистром состояния 30009:

При считывании значения из регистра 30009 при работе УПП на полном напряжении получаем значение «52».

Необходимо перевести «52» из десятичного вида в двоичный. Получим следующее двоичное число 00110100.

Таблица А.5.1 – Слово состояние 30009

Бит	7	6	5	4	3	2	1	0
Значение	0	0	1	1	0	1	0	0

Бит 2 – Включен байпас

Бит 4 - Работа

Бит 5 – Полное напряжение

Таблица А.6 — Коды аварий

Код аварии	Описание	
0	Нет ошибки	
1	Перегрев	
2	Потеря фазы / нет напряжения	
3	Превышение тока	
4	Перегрузка	
5	Дисбаланс тока	
6	Неправильное чередование фаз	
7	EEPROM не может быть записан	
8	Другие аварии и ошибки	

В таблице А.7 указаны адреса параметров, которые можно настроить и прочитать.

Таблица А.7 — Параметры

Параметр	Modbus-адрес	Диапазон настроек
Ток нагрузки (FLA)	40002	1÷150 A
Резерв	40003	
Резерв	40004	
Порог превышения тока	40005	500 %÷850 % FLA
Время превышения тока	40006	0,1÷1 c
Уровень перегрузки	40007	100 %÷200 % FLA
Класс перегрузки	40008	0: Класс 10A 1: Класс 10 2: Класс 20 3: Класс 30
Резерв	40009	
Начальное напряжение	40010	015 (n*3+30) %
Время ускорения	40011	015 Тускор=n*2 (если n=0, тогда Тускор=1 с), с
Время замедления	40012	015 Тзамед=n*2 (если n=0, тогда Тзамед=1 с), с
Управление параметрами времени ускорения/замедления и начальное напряжение	40013	0 – Управление потенциометрами на панели управления 1 – Управляется через Modbus
Резерв	40014	
Защита от неправильного чередования фаз	40015	0: Выключено 1: Включено
Резерв	40016	
Адрес устройства	40017	1÷127
Скорость соединения	40018	0: 1200 BPS 1: 2400 BPS 2: 4800 BPS 3: 9600 BPS 4: 19200 BPS
Четность	40019	0 - Нечет (Even) 1 - Чет (Odd) 2 - нет

Приложение Б Пример схем подключения

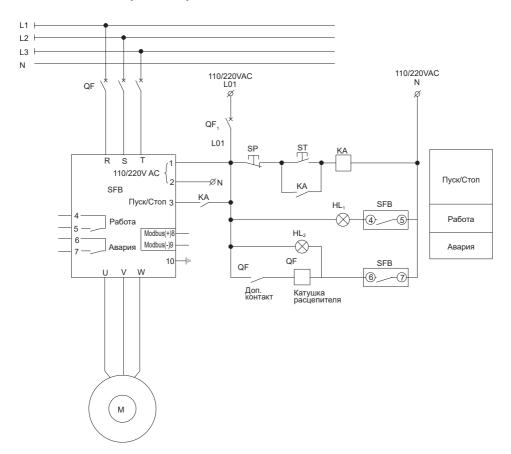


Рисунок Б.1 – Пример схемы подключения трехфазного УПП с платой управления с питанием 100÷240 В АС

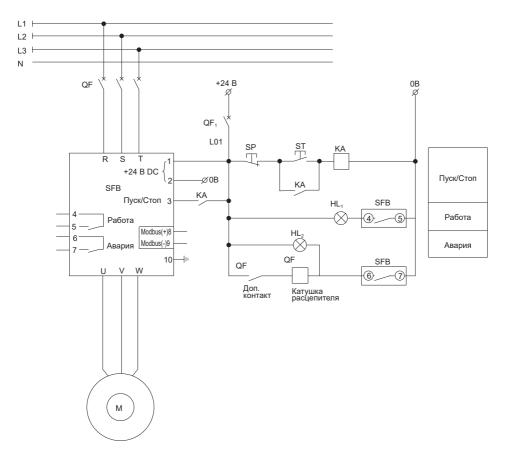


Рисунок Б.2 — Пример схемы подключения трехфазного УПП с платой управления с питанием $24\ B\ D$

Приложение Б / 33

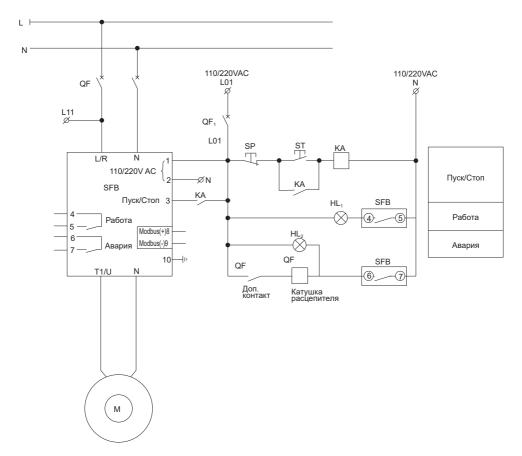


Рисунок Б.3 — Пример схемы подключения однофазного УПП с платой управления с питанием $100 \div 240~B~AC$

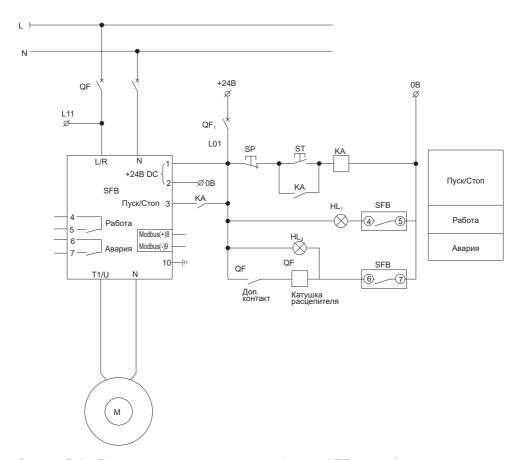


Рисунок Б.4 — Пример схемы подключения однофазного УПП с платой управления с питанием 24 В DC